
Updated 2023 edition

Guide for Executives

Making the Right Call for Your Company's Mobile App Future

HYBRID/MULTIPLATfORM

NATIVE



Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform

Executive Summary

This guide is designed to assist you, a 
key decision-maker in your 
organization, in navigating the 
landscape of mobile application 
development. 



Embarking on the app development 
journey requires a critical decision 
upfront: whether to choose native or 
hybrid/multiplatform development 
frameworks. This decision has a 
significant impact on the application's 
budget, performance, functionality, 
user experience, and overall success. 
And most important of all, 
significant financial ramifications 
will result from this decision. 



The aim of this guide is to provide a 
comprehensive comparison of native 
(Swift for iOS and Kotlin for Android) 
and hybrid/multiplatform (Ionic, 
Flutter, Xamarin and ReactNative) 
frameworks. 



It's designed to equip you with the 
critical insights needed to make 
informed decisions about your mobile 
app development strategy and to 
provide you with persuasive 
arguments to secure approval and 
support from your board and fellow 
executives.



SPOILER: Native apps are superior for most business cases, but there are 
exceptions! Read on to learn more.

01



Building a mobile app is a major undertaking with large budget and timeline. 
Projects can range from hundreds of thousands of dollars to millions and can 
take more than 2 years to build. 



Making a wrong decision can lead to a subpar application, but worst, can also 
lead to having to re-build your app from scratch (as AirBnB has learned the 
hard way). 



This decision will impact hiring, budgeting, and your ability to evolve your app 
through time. And its success can increase the top and bottom lines.



Why this Decision Matters?

02Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



There are several advantages of choosing native development for your business 
app

 Overall Project Budget: While native development might require more upfront 
resources and time due to the necessity of creating separate apps for each 
platform, the long-term maintenance costs for native apps can be lower, as they 
are more stable and less susceptible to issues arising from OS updates. These 
factors become particularly critical for complex apps or apps aiming to deliver a 
premium user experience over many years.


 Security: Native apps have the advantage of the platform's built-in security 
features. Additionally, since they are not dependent on third-party platforms, 
there are fewer vulnerabilities that can be exploited by hackers.

 Technological Independence: With native apps, you are choosing not to rely on 
third parties to power your applications. You can take your source code and 
change development teams, and a problem by a third-party won’t affect you.

Key Benefits of Native Applications

Native applications are designed and 
developed to run on a specific 
platform, such as iOS or Android. 
Because these apps are optimized for 
the specific operating system they are 
developed for, they can directly access 
and utilize the device's hardware and 
native features, such as the camera, 
microphone, GPS, and more. This 
means they can deliver a highly 
optimized, fast, and smooth user 
experience. 

Native apps also adhere to the specific 
UI standards of the platform, offering a 
more integrated and intuitive user 
interface. Furthermore, native app 
frameworks are meticulously crafted 
and maintained by the respective 
hardware developers of each platform 
(such as Apple or Google), 
guaranteeing continuous support and 
ongoing enhancements as time 
progresses, which can avoid costly re-
engineering in the short to medium 
term.

In-Depth Look at Native Applications

03Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



 Performance: Since native apps are developed specifically for a platform, they 
are highly optimized for it. They can make full use of the device's hardware and 
the operating system's features, resulting in a highly responsive, fast, and 
smooth performance. This can lead to a significantly better user experience, 
especially for apps that require complex computations or handle substantial 
amounts of data.


 User Experience: Native apps can access the native UI components of the 
platform they are developed for. This means they can provide a UI that is 
consistent with the user expectations for that platform, resulting in an intuitive 
and seamless user experience.


 Scalability: Native apps can handle more complex functionalities and larger 
amounts of data, making them more scalable. As your business and user base 
grows, your app will be able to scale to meet increased demands.

 Size of Community: Both Swift and Kotlin have large, active developer 
communities. This means that support, in the form of tutorials, forums, and 
third-party tools, is readily available. This can greatly aid the development 
process and help resolve any issues quickly.

 Ease of Recruiting Developers: Given the popularity of Swift and Kotlin, finding 
skilled developers for these languages is typically easier compared to hybrid/
multiplatform frameworks. Moreover, developers for these languages are often 
more specialized, which can contribute to higher quality code and better 
application performance. According to our research, there is a 5-1 ratio of 
native developers to hybrid/multiplatform developers in North-America. (for 
example, there are 5,500 “Flutter” developers on LinkedIN in Canada, and there 
are 26,000 “Swift” or “Kotlin” developers)

 Maintenance of Programming Languages: Swift and Kotlin are maintained and 
continuously improved by Apple and Google, respectively. This ensures that 
these languages stay up-to-date with the latest technological advances and 
standards, and can provide optimized and efficient app performance. Native 
apps can also be quicker and easier to update or upgrade in line with new OS 
versions, compared to hybrid/multiplatform apps.

 Enhanced User Satisfaction and Reviews: Native apps offer superior user 
experiences, performance, and quality, resulting in heightened user satisfaction. 
Consequently, this translates into higher app store ratings, and therefore more 
prominence, better visibility, and more downloads.

04Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



 Swift for iOS: Swift is a modern, 
powerful and intuitive 
programming language developed 
by Apple. Swift is designed to be 
easy to read and maintain, and it 
offers robust, efficient, and 
responsive app development. Swift 
is interoperable with C, Objective-
C, C++ and also other languages.


Let's examine the primary languages used for native development:

 Kotlin for Android: Kotlin is a 
modern, statically typed 
programming language that is 
officially supported by Google for 
Android app development. It is 
fully interoperable with Java, but 
more concise, expressive, and 
safer.

05Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



Despite some limitations, hybrid/multiplatform apps offer several advantages that 
might make them a suitable choice for certain projects

 Cost and Time to Market: Since a single codebase is used for all platforms in 
hybrid/multiplatform app development, it can lead to faster development and 
deployment times compared to native development. If your app needs to be 
available on both iOS and Android, and time-to-market is a critical factor, 
hybrid/multiplatform development might be beneficial

 Unified Development Process: Since the same codebase is used for all 
platforms in hybrid/multiplatform development, you will not need separate iOS 
and Android teams. This can significantly reduce the development team size, 
making it a great option for startups or companies with tight budgets. One or a 
small team of developers can handle the development for both iOS and 
Android, contributing to cost efficiency in the short term

 Platform Diversity: One of the significant benefits of hybrid/multiplatform 
applications is their ability to operate across multiple platforms. If your business 
targets more than two platforms, such as iOS, Android, Windows, etc., then 
hybrid/multiplatform development starts to make a lot of sense. With a single 
codebase, hybrid/multiplatform frameworks can facilitate the creation of an 
application that works seamlessly across multiple platforms. This can save 
considerable time and resources, making hybrid/multiplatform development an 
attractive choice for businesses aiming for a broad, multi-platform reach. It is 
important to note that while the aforementioned advantages hold true for 
applications designed for different OS, the same cannot be said for applications 
that span across multiple devices within a platform ecosystem. For instance, if 
you intend to release an app within the Apple ecosystem encompassing iOS, 
MacOS, WatchOS, and tvOS, native apps can seamlessly extend to each device 
with minimal effort, unlike hybrid/multiplatform applications that may face 
challenges in achieving the same level of seamless integration.


Key Benefits of Hybrid/Multiplatform Applications

In-Depth Look at Hybrid/Multiplatform Frameworks

06Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



*While the terms "hybrid" and "multiplatform” development frameworks often 
get used interchangeably, they technically refer to different concepts in the 
realm of mobile app development. For this guide, we will refer to them as one 
development framework concept, as their benefits and drawbacks are similar. 
However, here is more detail explaining both terms:

Hybrid Apps

Hybrid applications are essentially 
web applications (typically developed 
using HTML5, CSS, and JavaScript) 
enclosed in a native app shell. They 
run inside a WebView (a native 
container that can display web 
content), but can also interact with 
native device features via various 
plugins.



Multiplatform Development

Frameworks

On the other hand, multiplatform 
development frameworks enable 
developers to write code once and 
compile it to multiple platforms — 
producing a “native” app for each 
platform (without native code).

07Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



Let's delve into these primary frameworks used for hybrid/multiplatform 
development:





 Ionic: Ionic is an open-source 
framework for developing mobile 
apps. It utilizes web technologies 
and focuses on performance, 
usability, and platform-specific 
design. Its components allow the 
developer to create apps with a 
native-like feel.

 Xamarin: A Microsoft-owned 
framework, Xamarin allows you to 
build Android, iOS, and Windows 
apps with .NET and C#. It gives you 
the ability to share code across all 
platforms.

 Flutter: Created by Google, Flutter 
is a UI toolkit for crafting natively 
compiled applications for mobile, 
web, and desktop from a single 
codebase. It uses the Dart 
programming language and is 
known for its fast development.

 ReactNative: ReactNative,

developed by Facebook, allows 
developers to build mobile 
applications using only JavaScript and 
React. It translates your markup to real, 
native UI elements, leveraging existing 
means of rendering views on whatever 
platform you are working with.

Hybrid/multiplatform apps can face challenges when it comes to performance, 
especially for complex applications or those requiring extensive use of device 
features. Hybrid/multiplatform apps can also present difficulties with maintenance 
over time. Compatibility with new OS versions or hardware features may require 
additional work compared to native apps, which can increase maintenance costs in 
the long run.

08Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



In the world of mobile app development, executives often face the challenge of 
choosing between native and hybrid/multiplatform app development. While both 
have their advantages, native applications often provide a superior return on 
investment (ROI) for most businesses, particularly over the long term. Here's why: 




1. Optimized Performance: Native applications deliver unmatched performance 
because they're built specifically for the platform they're running on, using the 
platform's core programming language and APIs. This means faster load times, 
smoother transitions, and an overall user experience that leaves a lasting positive 
impression on your customers, ultimately driving higher user engagement and 
conversion rates.

2. Unparalleled User Experience (UX): By offering features and design consistent 
with the platform's UI/UX guidelines, native apps feel intuitive to users, leading to 
increased usage and customer satisfaction. Better user experience means more 
repeat customers, directly contributing to your bottom line.


3. Scalability and Futureproofing: Native apps are more scalable and adaptable to 
the growth of your business and changes in user requirements. The robustness of 
native development allows the app to handle more complex functionalities and 
larger amounts of data, protecting your investment as your business evolves. Plus, 
they are directly supported by the companies building the phones the apps are 
installed on.


4. Security and Compliance: As data privacy regulations continue to tighten 
globally, native apps offer the advantage of superior security features inherent to 
the platform. This reduces the risk of costly data breaches and non-compliance 
penalties, protecting your company's reputation and bottom line.


5. Better Support and Maintenance: Swift and Kotlin are actively maintained and 
improved by Apple and Google, respectively, ensuring your app stays current with 
the latest technology trends and standards. This results in lower maintenance costs 
and better long-term support, significantly improving your ROI over time.

Why Native Applications are Superior for Most Business Cases

09Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



6. Larger Developer Pool: Recruiting is easier for native platforms as the developer 
communities for Swift and Kotlin are large and well-established. This can result in 
faster development times, lower costs, and better overall app quality.

7. Apps for Only One Platform: Many apps are built for only one platform (for 
example, if your employees all have iPads and you wish to supply them with a tool 
on their devices in the form of an app). In this case, building a hybrid/multiplatform 
app serves no purpose and brings MORE costs and time than using native.



8. Costs of Continuous Development and Improvements: Native apps will provide 
apps that are much easier to support in time should you wish to make changes, 
both to the functionality and look and feel. Their platform independence also 
makes it easier to update apps yearly and to debug apps.

While hybrid/multiplatform apps might seem attractive due to initial cost and time 
savings, the long-term ROI of native apps tends to be significantly higher for most 
businesses. By investing in a native app, you're ensuring your mobile strategy is 
built on a solid foundation that will support your business's growth and adapt to 
future trends.

10Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



Why Most Large Enterprises and Funded Startups Opt for Native Apps: Insights 
from Employment Data



Employment data serves as a robust indicator of the preference for native apps 
within large enterprises and well-funded startups. An analysis of hiring trends in 
these organizations reveals a substantial lean towards employing developers with 
expertise in native app development over those with skills in hybrid/multiplatform 
development.



In contrast, developers with skills in hybrid/multiplatform development are more 
commonly found within digital agencies. These agencies often work with a broader 
range of clients, including smaller businesses and projects with more constrained 
budgets, where the cross-platform capabilities and potentially lower upfront 
development costs of hybrid/multiplatform apps can be appealing.



However, for large enterprises and well-funded startups, the immediate cost 
savings offered by hybrid/multiplatform development are often outweighed by the 
long-term benefits of native development, which include superior performance, 
improved user satisfaction, and lower long-term maintenance costs. This 
preference underscores the value that these businesses place on the distinct 
advantages offered by native apps. Thus, their hiring practices reflect a strategic 
investment in the quality and longevity of their mobile applications, cementing 
native app development as their preferred choice.

11Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



While native applications often prove superior in most scenarios, there are certain 
circumstances where choosing a hybrid/multiplatform approach may be more 
beneficial. Here are some scenarios where a hybrid/multiplatform application 
might be a better choice:

 Simple Apps on Many Platforms: If your app has simple functionalities and 
doesn't need advanced native features or high-performance, and needs to be 
deployed to many platforms, a hybrid/multiplatform app could be an effective 
choice. They offer sufficient functionality for basic applications, such as content 
distribution apps or simple informational apps.


 Leveraging Complex Web Infrastructure: When firms seek to transport an 
existing complex web infrastructure's functionality to mobile, feature for feature, 
choosing a hybrid/multiplatform approach can prove beneficial (For example, if 
a company has a large complex React website with a large React development 
team, then ReactNative could prove a good choice). This route may simplify the 
transition, but the trade-offs concerning adding new features should be 
weighed in the decision.

 Quick Market Entry: If getting your app to the market as quickly as possible is a 
priority, hybrid/multiplatform app development can expedite this process. 
Since a single codebase is used for all platforms, you might be able to reduce 
the development time.

 Minimal Device Feature Usage: If your app doesn't rely heavily on device 
features like GPS, camera, or microphone, hybrid/multiplatform development 
might suffice. Though hybrid/multiplatform apps can access device features, 
native apps leverage these with greater efficiency and performance.

 No Connected Devices: If your app doesn't need to connect or communicate 
with other hardware devices (like wearables, IoT devices, connected cars, etc.), a 
hybrid/multiplatform app could be a feasible choice.

Exceptions: When to Choose Hybrid/Multiplatform Applications

12Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



 Short App Life: For apps intended to serve only in the short-term (less than 1 
year), a hybrid/multiplatform app can suffice, given its faster time-to-market and 
lower initial development costs (an example would be a seasonal marketing 
app).

 More than 3 Operating Systems: If your business is targeting multiple platforms 
beyond just iOS and Android (for example, web, Windows, Linux, other TV 
operating systems, etc) - hybrid/multiplatform applications start to make sense. 
Since these apps share a common codebase, they can be deployed across 
these various platforms, offering substantial time and cost efficiencies. This 
allows for a broader reach to your audience, irrespective of the device or 
operating system they use. However, keep in mind that each additional platform 
may introduce its own complexities and variations, which could impact the 
overall user experience if not properly addressed.



It's essential to carefully assess the unique requirements, objectives, and 
constraints of your project before deciding on the development approach. While 
native apps offer a range of benefits, hybrid/multiplatform apps do have their 
place for certain projects and situations.

Leveraging Large Web Teams: Evaluating the Trade-offs of Hybrid/Multiplatform Choices



While companies with significant web development teams may initially be inclined towards 
hybrid/multiplatform solutions, it's crucial to recognize the inherent complexities of this strategy. 
Adding a mobile app development project would likely require expanding the team, rather than 
solely relying on existing resources. While these frameworks might enable use of familiar web 
technologies like JavaScript, HTML, and CSS, it's not feasible for your existing team to concurrently 
maintain web tools and create a new app without potentially impacting quality or delivery 
timelines.



Moreover, while hybrid/multiplatform technologies offer some degree of flexibility, it's important 
to note that not all web technologies are readily transferable to the mobile environment. There can 
be limitations, particularly when attempting to access advanced device-specific functionalities or 
in delivering a seamless, native-like user experience.



So, while pursuing a hybrid/multiplatform strategy could initially seem like an efficient way to 
capitalize on your current team's skills, it's essential to evaluate the potential trade-offs. The need 
for team expansion, the limitations in transferring all web technologies to mobile, and the 
challenges of concurrently maintaining web tools and developing a new app, should all be 
carefully considered in the decision-making process.

13Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



In the world of digital agencies, you'll find most software agencies advocating for 
hybrid/multiplatform solutions. While there are certain situations where this can be 
beneficial for the client (see list of exceptions), it's crucial to understand the 
reasons behind this recommendation and how it can favor the agency's interests. 
Here's why agencies might lean towards selling you a hybrid/multiplatform app

 Agency Profitability: Developing hybrid/multiplatform apps can be more 
profitable for agencies. Given the single codebase, it is quicker to develop and 
deploy apps on multiple platforms, therefore the lower initial budget can lead 
to higher sales conversion. Conversely, the very high support and maintenance 
costs of hybrid/multiplatform apps will mean higher long-term revenues for the 
agency

 Customer Dependence: Choosing a hybrid/multiplatform framework often 
results in clients being "handcuffed" to the agency's tech stack, as there are less 
available teams that can take on the specific hybrid/multiplatform language that 
was chosen. This dependence can make it harder for the client to switch 
agencies in the future or to recruit internal talent to take over the app

 Developer Recruitment: It's typically easier for agencies to recruit and manage 
developers if they specialize in a single hybrid/multiplatform framework. 
Specializing in a specific hybrid/multiplatform framework means they only need 
to search for developers proficient in one technology stack, rather than having 
separate teams for Swift (iOS) and Kotlin (Android), which can streamline their 
hiring process and give them more flexibility. Good for the agency, but what’s in 
it for the client

 Ongoing Maintenance Fees: Hybrid/multiplatform apps generally have higher 
maintenance costs. They don't age as gracefully as native apps, often requiring 
updates and fixes with each new OS update to ensure they continue to function 
as expected. These ongoing costs can be a continuous source of revenue for 
the agency.


It's important to remember that a reputable agency will consider the best interests of their clients 
and recommend a solution that meets the project's unique needs, whether that's a hybrid/
multiplatform or native approach. However, understanding these motivations can help you enter 
discussions with an agency better informed, and ensure you're getting the solution that best fits 
your needs, not just the agency's.

"Why Most Software Agencies Focus on Hybrid/Multiplatform Apps



We previously mentioned React Native, Xamarin, and Flutter as hybrid/
multiplatform development frameworks. We could have also cited PhoneGap, 
Cordova, Appcelerator, and Titanium, among others. Over the past few years, these 
have emerged on the market, one after the other, each reaching its peak of 
popularity quite rapidly. However, many ended up having to shut down after just a 
few years.



For example, even though it was acquired by Adobe in 2011, PhoneGap is no 
longer maintained as of 2020.



All these hybrid/multiplatform technologies fall prey to trends. Even though they 
seem innovative at the time of their respective releases, these platforms eventually 
lose the interest of app creators after a while. 



This points to the enduring value and stability offered by native application 
development, which continues to evolve while maintaining its relevance in the face 
of changing trends. Also, it is important to mention that Native frameworks are 
published, maintained, and marketed by the companies that are selling the 
smartphone themselves (Apple and Google). Therefore, it makes sense that they 
would favor these frameworks.

The Longevity of Native

15Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



The above graph (1), created on Stack 
Overflow, shows the evolution of the 
percentage of questions asked by 
internet users about the different 
multiplatform frameworks over time. 
For all of them, we notice a peak of 
interest at their release, followed by a 
stabilization period before a rapid 
decline. This illustrates the trend effect 
that we mentioned earlier.

Stack Overflow is a question-and-answer website focused on computer programming. 

This other graph (2) compares the 
same information for the two most 
recently sought-after multiplatform 
frameworks: Flutter and React Native. 
Still the subjects of many questions, 
they both seem to have recently 
reached their peak popularity on Stack 
Overflow.


The main problem with hybrid/multiplatform technologies is therefore their lack of 
stability. Choosing hybrid/multiplatform means taking the risk of opting for a 
development framework that will no longer be supported after a few years. This is 
less of a concern for a short-term and/or disposable project, but for a long-term 
project, the death of the development framework forces you to start the app 
development from scratch.



Choosing the right framework for your mobile app is a decision that impacts not 
just your development process, but your business as a whole.

Native applications, built specifically 
for iOS or Android platforms using 
Swift or Kotlin respectively, provide 
superior performance, a seamless user 
experience, and access to the full 
capabilities of the device. They offer a 
level of scalability, security, and control 
that makes them the choice of many 
tech companies and organizations 
building in-house apps. The robust 
community and ease of hiring 
developers for these languages are 
other key advantages.

Hybrid/multiplatform applications, on 
the other hand, offer a faster time-to-
market and can be more cost-effective 
initially, especially for throw-away 
projects or simpler app requirements. 
However, one should be mindful of 
potential higher maintenance costs 
and the necessity of frequent updates 
to keep up with OS changes.

It's essential to take a holistic view of your app project. Consider your business's 
unique needs, resources, and long-term goals when deciding between native and 
hybrid/multiplatform development. While agencies might often advocate for 
hybrid/multiplatform apps for their benefits, it's crucial to understand how this 
decision impacts your business in the long run.



Ultimately, the choice between native and hybrid/multiplatform development isn't 
about which one is universally superior, but rather which is the best fit for your 
specific circumstances, objectives, and constraints. Use this guide as a starting 
point, consult with your development team and partners, and make an informed 
decision that best serves your business and your users.

Conclusion

17Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform



Glossary of key terms

 User Experience (UX): This refers to the overall experience a user has while 
interacting with a product such as a website or a mobile app

 Operating System (OS): An operating system is system software that manages 
computer hardware, software resources, and provides various services for 
computer programs. iOS (Apple) and Android (Google) are the two primary 
mobile operating systems

 Scalability: Scalability is the capability of a system to handle a growing amount 
of work, or its potential to accommodate growth

 Maintenance Cost: This refers to the cost associated with regular updates, bug 
fixes, adding new features, and ensuring the smooth functioning of an app after 
it has been deployed

 Time-to-Market: This refers to the total time it takes from a product's 
conception to its launch in the market

 Tech Stack: A tech stack refers to the combination of software products and 
programming languages used to create a web or mobile application

 Device Features: Device features refer to the functionalities of a mobile device 
that apps can access, such as the camera, microphone, accelerometer, GPS, etc.



These definitions should provide clarity on some of the main technical terms used 
throughout the guide. If you come across any additional terms you're unfamiliar 
with, don't hesitate to ask for further clarification.

Appendix

18Sidekick Interactive Guide: Native vs. Hybrid/Multiplatform


